Export 296 results:
Kohler, R.P.: Java-Programm zur interaktiven Bearbeitung von JALC-Herleitungen. (2012).
Bucheli, S.: Justification Logics with Common Knowledge. (2012).
Kuznets, R., Studer, T.: Justifications, Ontology, and Conservativity. In: Bolander, T., Braüner, T., Ghilardi, S., and Moss, L. Advances in Modal Logic, volume 9. pp. 437-458. College Publications (2012).
Studer, T.: Justified Terminological Reasoning. In: Clarke, E.E., Virbitskaite, I., and Voronkov, A. Proceedings of Perspectives of System Informatics PSI'11. pp. 349-361. Springer (2012).
Buss, S.R., Kuznets, R.: Lower complexity bounds in justification logic. Annals of Pure and Applied Logic. 163, 888-905 (2012).
Goetschi, R.: On the Realization and Classification of Justification Logics. (2012).
Savateev, Y.: Product-free Lambek calculus is NP-complete. Annals of Pure and Applied Logic. 163, 775-788 (2012).
Goetschi, R., Kuznets, R.: Realization for Justification Logics via Nested Sequents: Modularity through Embedding. Annals of Pure and Applied Logic. 163, 1271-1298 (2012).
Brünnler, K., Studer, T.: Syntactic cut-elimination for a fragment of the modal mu-calculus. Annals of Pure and Applied Logic. 163, 1838-1853 (2012).
Eberhard, S., Strahm, T.: Weak theories of truth and explicit mathematics. In: Berger, U., Diener, H., Schuster, P., and Seisenberger, M. Logic, Construction, Computation. pp. 157-184. Ontos Verlag (2012).
Jäger, G., Studer, T.: A Buchholz rule for modal fixed point logics. Logica Universalis. 5, 1-19 (2011).
Probst, D., Strahm, T.: Admissible closures of polynomial time computable arithmetic. Archive for Mathematical Logic. 50, 643-660 (2011).
Studer, T.: An application of justification logic to protocol verification. Proceedings of Computational Intelligence and Security CIS 2011. pp. 779-783. IEEE (2011).
Fabian, D.: Applicative theories on tree ordinal numbers. (2011).
Studer, T.: Justification Logic, Inference Tracking, and Data Privacy. Logic and Logical Philosophy. 20, 297-306 (2011).
Bucheli, S., Kuznets, R., Studer, T.: Justifications for Common Knowledge. Journal of Applied Non-classical Logics. 21, 35-60 (2011).
Krähenbühl, J.: On the Relationship between Choice Schemes and Iterated Class Comprehension in Set Theory. (2011).
Bucheli, S., Kuznets, R., Studer, T.: Partial Realization in Dynamic Justification Logic. In: Beklemishev, L. and de Queiroz, R. Logic, Language, Information and Computation, 18th International Workshop, WoLLIC 2011, Philadelphia, PA, USA, May 18-20, 2011, Proceedings. pp. 35-51 (2011).
Spescha, D., Strahm, T.: Realizability in weak systems of explicit mathematics. Mathematical Logic Quarterly. 57, 551-565 (2011).
Savateev, Y.: Sequent Calculus for Justifications. (2011).
Probst, D.: The provably terminating operations of the subsystem PETJ of explicit mathematics. Annals of Pure and Applied Logic. 162, 934-947 (2011).
Jäger, G., Probst, D.: The Suslin operator in applicative theories: its proof-theoretic analysis via ordinal theories. Annals of Pure and Applied logic. 162, 647-660 (2011).
Brünnler, K., Goetschi, R., Kuznets, R.: A Syntactic Realization Theorem for Justification Logics. In: Beklemishev, L., Goranko, V., and Shehtman, V. Advances in Modal Logic, Volume 8. pp. 39-58. College Publications (2010).
Wehbe, R.: Annotated Systems for Common Knowledge. (2010).
McKinley, R.: Expansion nets: Proof nets for for propositional classical logic. In: Fermüller, C. and Voronkov, A. Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 17). pp. 535-549. Springer Berlin / Heidelberg (2010).