Export 292 results:
Studer, T.: Privacy Preserving Modules for Ontologies. In: Pnueli, A., Virbitskaite, I., and Voronkov, A. Proceedings of Perspectives of System Informatics PSI'09. pp. 380-387 (2010).
Brugger, J.: Proof-theoretic aspects of weak König's Lemma. (2010).
Studer, T.: Proof-Theoretic Contributions to Modal Fixed Point Logics. (2010).
Kuznets, R.: Self-Referential Justifications in Epistemic Logic. Theory of Computing Systems. 46, 636-661 (2010).
Pulver, C.: Self-Referentiality in Contraction-free Fragments of Modal Logic S4. (2010).
Bucheli, S., Kuznets, R., Studer, T.: Two Ways to Common Knowledge. In: Bolander, T. and Braüner, T. Proceedings of the 6th Workshop on Methods for Modalities (M4M–6 2009), Copenhagen, Denmark, 12–14 November 2009. pp. 83-98. Elsevier (2010).
Feferman, S., Strahm, T.: Unfolding finitist arithmetic. Review of Symbolic Logic. 3, 665-689 (2010).
Stolz, M.C.: Verification of Workflow Control-Flow Patterns with the SPIN Model Checker. (2010).
Strahm, T.: Weak theories of operations and types. In: Schindler, R. Ways of Proof Theory. pp. 441-468. Ontos Verlag (2010).
Jäger, G., Krähenbühl, J.: $Σ^1_1$ choice in a theory of sets and classes. In: Schindler, R. Ways of Proof Theory. pp. 283-314. Ontos Verlag (2010).
Kuznets, R.: A Note on the Use of Sum in the Logic of Proofs. In: Drossos, C., Peppas, P., and Tsinakis, C. Proceedings of the 7th Panhellenic Logic Symposium. pp. 99-103. Patras University Press, Patras University, Greece (2009).
Eberhard, S.: Aspekte beweisbar totaler Funktionen in applikativen Theorien. (2009).
Steiner, D.: Belief Change Functions for Multi-Agent Systems. (2009).
Studer, T.: Common knowledge does not have the Beth property. Information Processing Letters. 109, 611-614 (2009).
Stouppa, P., Studer, T.: Data Privacy for ALC Knowledge Bases. In: Artemov, S. and Nerode, A. Proceedings of Logical Foundations of Computer Science LFCS'09. pp. 409-421. Springer (2009).
Stouppa, P.: Deciding Data Privacy for ALC Knowledge Bases. (2009).
Brünnler, K.: Deep Sequent Systems for Modal Logic. Archive for Mathematical Logic. 48, 551-577 (2009).
Spescha, D., Strahm, T.: Elementary explicit types and polynomial time operations. Mathematical Logic Quarterly. 55, 245-258 (2009).
Jäger, G.: Full operational set theory with unbounded existential quantification and power set. Annals of Pure and Applied Logic. 160, 33-52 (2009).
Krähenbühl, J.: Justifying induction on modal mu-formulae. (2009).
Artemov, S., Kuznets, R.: Logical Omniscience as a Computational Complexity Problem. In: Heifetz, A. Theoretical Aspects of Rationality and Knowledge, Proceedings of the Twelfth Conference (TARK 2009). pp. 14-23. ACM, Stanford University, California (2009).
Brünnler, K., Straßburger, L.: Modular Sequent Systems for Modal Logic. In: Giese, M. and Waaler, A. Tableaux 2009. Springer-Verlag (2009).
Alberucci, L., Facchini, A.: On modal $μ$-calculus and Gödel-Löb logic. Studia Logica. 91, 145-169 (2009).
Zumbrunnen, R.: Ontological Questions about Operational Set Theory. (2009).
Jäger, G.: Operations, sets and classes. In: Glymour, C., Wei, W., and Westerstahl, D. Logic, Methodology and Philosophy of Science - Proceedings of the Thirteenth International Congress. College Publications (2009).